Let P_n(z) be a polynomial of nth order with distinct zeros zeta_k, with k = 0, 1, ..., n-1. Then the inverse of the polynomial is a meromorphic function of z, with simple poles at the zeros. n-1 [1/P_n(z)] = PI [ 1/(z - zeta_k ) ] k=0 Then expanding the product in partial fractions gives n-1 [1/P_n(z)] = SIGMA [R_k/(z - zeta_k ) ] k=0 where the residue, R_(k) := PI [1/(zeta_(k) - zeta_j) ] j not= (k) lim [(z - zeta_m)/P_n(z)] = R_m z->zeta_m The derivative of the polynomial P_n(z) can be expressed by n-1 P_n(z) (d/dz) P_n(z) = SIGMA ------------ k=0 (z - zeta_k) n-1 1 = P_n(z) SIGMA ------------ k=0 (z - zeta_k) Therefore, n-1 1 (d/dz) log( P_n(z) ) = SIGMA ------------ k=0 (z - zeta_k) and d 1 d -- [------- -- P_n(z)] = dz P_n(z) dz n-1 1 - SIGMA -------------- k=0 (z - zeta_k)^2 The unnormalized Hermite polynomials defined by the Rodrigues formula [equation (9.4) and below] satisfy (See, e. g., [Morse 1953], v1, p. 786) the following: (d/dz) H_n(z) = 2 n H_(n-1)(z) ( (d/dz)^2 - 2z d/dz + 2n ) H_n(z) = 0 z H_n(z) = n H_(n-1)(z) + (1/2) H_(n+1)(z) (d/dz) ( exp( -z^2 ) H_n(z) ) = -2 exp( -z^2 ) H_(n+1)(z) infinity t^n exp( -t^2 + 2 tz ) = SIGMA ---- H_n(z) n=0 n! 2^n +infinity H_n(z) = ---------- INTEGRAL (z + it)^n exp( -t^2 ) dt sqrt( pi ) -infinity n n! H_n(x - y) = SIGMA --------- y^(n-j) H_j(x) j=0 j! (n-j)! n n! = 2^(-n/2) SIGMA --------- H_j(x sqrt(2)) H_(n-j)(-y sqrt(2)) j=0 j! (n-j)! n SIGMA binom(n k) H_k(x) H_n-k(y) = 2^(n/2) H_n( (x+y)/sqrt(2) ) k=0 n SIGMA binom(n k) H_k(x) (2y)^(n-k) = H_n( x+y ) k=0 exp -(x^2 + y^2 - 2xyz)/(1 - z^2) --------------------------------- sqrt(1 + z^2) infinity (z/2)^k = exp( -(x^2 + y^2) ) SIGMA -------- H_k(x) H_k(y) k=0 k! From the preceding as a special case, the expansion of the Fourier kernel in Hermite polynomials: exp( -(1/2)(x^2 + s^2) ) infinity exp( isx ) = ------------------------ SIGMA i^k ~H_k(x) ~H_k(s) sqrt((2 pi)) k=0 Then also from the preceding as a special case, the expansion of an origin centered Gaussian function in Hermite polynomials: infinity (1/sqrt(2)) exp(-s^2) = SIGMA ~H_k(s) ~H_k(s) k=0 n(n-1) n(n-1)(n-2)(n-3) H_n(z) = (2z)^n - ------ (2z)^(n-2) + ---------------- (2z)^(n-4) 1! 2! - ... . where the last term is n! (-1)^(n/2) -------- (n/2)! if n is even and n! (-1)^((n-1)/2)) ---------- 2z ((n-1)/2)! if n is odd. In closed summation form [n/2] 2^(n-2k) n! H_n(z) = SIGMA (-1)^k ------------ z^(n-2k) k=0 k! (n-2k)! [n/2] = SIGMA (-1)^k k! (n 2k) (2k k) (2z)^(n-2k) k=0 where [n/2] is the integral part of n/2. The second expression uses binomial coefficients. Relations between the various Weber-Hermite functions [Whittaker 1927]: H_n(z) := (-1)^n exp( z^2 ) (d/dz)^n exp( -z^2 ) D_n(z) := (-1)^n exp( (z^2)/4 ) (d/dz)^n exp( -(z^2)/2 ) = exp( -(1/2)(z/sqrt(2))^2 )/(2^(n/2)) H_n(z/sqrt(2)) ~H_n(z) := H_n(z)/sqrt((2^n n!) ~D_n(z) := D_n(z)/[ (2 pi)^(1/4) sqrt(n!) ] ~D_n(z) = exp( -(1/2)(z/sqrt(2))^2 )/(2 pi)^(1/4) ~H_n(z/sqrt(2)) The orthogonality and normalization integrals for the various Weber-Hermite functions: +infinity INTEGRAL exp( -z^2 ) H_n(z) H_m(z) dz = (2 pi n! m!)^(1/2) delta_(nm) -infinity +infinity INTEGRAL D_n(z) D_m(z) dz = (2 pi n! m!)^(1/2) delta_(nm) -infinity +infinity INTEGRAL exp( -z^2 ) ~H_n(z) ~H_m(z) dz = sqrt( pi ) delta_(nm) -infinity +infinity INTEGRAL ~D_n(z) ~D_m(z) dz = delta_(nm) -infinity The D_n(z) satisfy the homogeneous integral equation +infinity lambda INTEGRAL exp( i (sx/2) ) phi(s) ds = phi(x) -infinity for appropriate characteristic values {lambda_n}. In fact, lambda_n = (-i)^n (n!/sqrt(2)) and the usual Fourier kernel can be expanded in D_n(z): infinity exp( i (sx/2) ) = 2 sqrt( pi ) SIGMA i^n ~D_n(s) ~D_n(x) n=0 so one can write the eigenvalue equation of the Fourier transform: +infinity INTEGRAL exp( i (sx/2) ) ~D_n(x) dx = sqrt((4 pi)) i^n ~D_n(s) -infinity Approximating the roots of H_n(z)
In [Section IX] asymptotic formulae for the roots of H_n(z), together with a spacing rule have been found which are not very good approximations for low values of n. Using these approximations as a starting point and rescaling them so that the rescaled approximations conform to the known exact constraint (9.17) on the true roots of H_n(z) yields new approximation formulae that are remarkably good. The asymptotic values from [Section IX] [Section IX] are given by
h(n, k) = - ( pi/(2 sqrt(n)) ) (k - (1/2)(n-1)) where k = 0, 1, 2, ..., (n-1), and h(n, 0) is the maximal h(n, k). From equation (9.17), we know that for the true roots q(n, k), (n-1) SIGMA q^2(n, k) = (n/2)(n-1) k = 0 but (n-1) SIGMA h^2(n, k) = (n/2)(n-1) pi^2 (n+1)/(24 n) k = 0 Now define rescaled h(n, k) h'(n, k) := h(n, k) pi sqrt([(n+1)/(24 n)] = - sqrt((6/(n+1)) (k - (1/2)(n-1)) so that (n-1) SIGMA h'(n, k) = 0 k = 0 and (n-1) SIGMA h'^2(n, k) = (n/2)(n-1) k = 0 Where the spacing between the h(n, k) is ( pi/(2 sqrt(n)) ), the spacing for the rescaled h'(n, k) is then sqrt((6/(n+1))). There is no n > 0 for which these spacings are equal, and for all n > 0, ( pi/(2 sqrt(n)) ) > sqrt((6/(n+1))). Comparing the actually numerically calculated values of the roots with the two approximations for n=6, we find Note in update: you can get the numerical roots of H_n(x) in MACSYMA (maxima under Linux) to 16 decimal places by default by: load("specfun"): allroots( hermite(n, x) ); specifying the value of n. Reset the value of the internal variable fpprec to a value greater than 16 for greater precision; 16 is the default value. Under Linux, the runtime maxima rpm package does not require separate installation of a LISP dialect when the LISP variant is GNU Common Lisp (gcl); the runtime packages for other dialects require installation of that LISP dialect separately and in addition. In those cases, I recommend clisp or cmucl, in that order. allroots(); can give inaccurate results in case of multiple roots of a given polynomial, but that will not be the case here with Hermite polynomials. wch - September 15, 2005 q(n, k): (2.350614 1.335851 0.436078 -0.436078 -1.335851 -2.350614) h'(n, k): (2.31455 1.38873 0.462910 -0.462910 -1.38873 -2.31455) h(n, k): (1.60319 0.961911 0.320637 -0.320637 -0.961911 -1.60319) For n=12 q(n, k): (3.88973 3.0208356 2.27914395 1.597825 0.947782 0.314240435 -0.314240435 -0.947782 -1.597825 -2.27914395 -3.0208356 -3.88973) h'(n, k): (3.73651 3.05715 2.37778 1.69841 1.01905 0.339683 -0.339683 -1.01905 -1.69841 -2.37778 -3.05715 -3.73651) h(n, k): (2.49396 2.04052 1.58707 1.13362 0.680172 0.226724 -0.226724 -0.680172 -1.13362 -1.58707 -2.04052 -2.49396)
The goodness of approximation is typical for the values of n from 2 to 12, as may be easily verified from the formula for h'(n, k) and the table of numerically extracted roots in [Section IX]. It would appear that these approximations are as good as they are because asymptotic linearity of the roots is already a dominant effect even for low values of n.
It is always true that sqrt(6/n) > sqrt(6/(n+1)) > π/(2 sqrt(n)) The ratio of spacings is, sqrt(6/(n+1)) / (π / (2 sqrt(n))) = (2 sqrt(6n)) / (π sqrt(n+1)) = (2/π) sqrt(6) sqrt( n/(n+1) ) = (sqrt(24)/π) sqrt( n/(n+1) ) sqrt(24) < 5 (sqrt(24)/π) = 4.898979/3.14159 = 1.559395 sqrt( n/(n+1) ) = sqrt(1 + 1/n) → 1 So, asymptotically, the ratio of these approximations of the root spacings is (sqrt(24)/π) = 1.559395 (approximately) NB: While for the maximal root, both h(n, 0) and h'(n, 0) appoximate the root from below, h(n, 0) < h'(n, 0) < q(n, 0) hence, h(n, n-1) > h'(n, n-1) > q(n, n-1) since q(n, n-1) = - q(n, 0). h(n, k) always approximates roots from below, while h'(n, k) for k ≠ 0 seems to obey |h'(n, k)| > |q(n, k)| while, also for k ≠ 0, |h(n, k)| < |q(n, k)| approximating the positive roots from above, and the negative roots from below. The maximal root is (spacing) * (n-1)/2, and its so far best approximation is h'(n, 0), and its negative is also the best approximation of the best approximation of the minimal root. h'(n, 0) = sqrt(6/(n+1)) → q(n, 0) For all roots other than k = 0 (maximal), and k = n-1 (minimal), the best approximation so far is by taking the average, of the approximations from below and above: h"(n, k) := (1/2)( h(n, k) + h'(n, k) ) = - (1/2) [ sqrt(6/(n+1)) + π/(2 sqrt(n)) ] (k - (n-1)/2) =
Using this scheme, the roots for n=12 through n=21 are approximately:
n=12: 3.81279 3.11956 2.42632 1.73308 1.03985 0.346610 -0.346620 -1.03986 -1.73309 -2.42632 -3.11956 -3.81280 n=13: 4.00206 3.33505 2.66804 2.00103 1.33402 0.667010 0 -0.667010 -1.33402 -2.00103 -2.66804 -3.33505 -4.00206 n=14: 4.18311 3.53956 2.89600 2.25245 1.60889 0.965330 0.321780 -0.321770 -0.965330 -1.60889 -2.25244 -2.89600 -3.53955 -4.18311 n=15: 4.35691 3.73449 3.11208 2.48966 1.86725 1.24483 0.622420 0 -0.622410 -1.24483 -1.86724 -2.48966 -3.11207 -3.73449 -4.35690 n=16: 4.52423 3.92100 3.31777 2.71454 2.11131 1.50808 0.904850 0.301620 -0.301610 -0.904840 -1.50807 -2.11130 -2.71453 -3.31776 -3.92099 -4.52422 n=17: 4.68576 4.10004 3.51432 2.92860 2.34288 1.75716 1.17144 0.585720 0 -0.585720 -1.17144 -1.75716 -2.34288 -2.92860 -3.51432 -4.10004 -4.68576 n=18: 4.84202 4.27237 3.70272 3.13307 2.56342 1.99377 1.42412 0.854470 0.284820 -0.284830 -0.854480 -1.42413 -1.99378 -2.56343 -3.13308 -3.70273 -4.27238 -4.84203 n=19: 4.99351 4.43867 3.88384 3.32901 2.77417 2.21934 1.66450 1.10967 0.554830 0 -0.554840 -1.10967 -1.66451 -2.21934 -2.77418 -3.32901 -3.88385 -4.43869 -4.99352 n=20: 5.14064 4.59952 4.05840 3.51728 2.97616 2.43504 1.89392 1.35280 0.811680 0.270560 -0.270560 -0.811680 -1.35280 -1.89392 -2.43504 -2.97616 -3.51728 -4.05840 -4.59952 -5.14066 n=21: 5.28375 4.75538 4.22700 3.69862 3.17025 2.64187 2.11350 1.58512 1.05675 0.528370 0 -0.528370 -1.05675 -1.58513 -2.11350 -2.64188 -3.17025 -3.69863 -4.22700 -4.75535 -5.28375))) NB Writing XI!(n) Q(n) XI(n) = Qd(n) out in component form. Are the resulting formulas useful, or a special case of known formulas for the Hermite polynomials? Result: (n-1) SIGMA (d_m d_(m-1))^(-1/2) (m/2)^(1/2) [ ~H_m(q(n, k)) ~H_(m-1)(q(n, j)) m=0 + ~H_m(q(n, j)) ~H_(m-1)(q(n, k)) ] = q(n, k) delta_(kj)
The following gives a specific example of an analytic expression in terms of a contour integral for the sum of values of a function at the zeros of another.
Let GAMMA be a closed contour in the complex plane that encloses the zeros zeta_k, with k = 0, 1, ..., n-1, of a P_n(z) as defined before, and let F(z) be some function analytic within GAMMA. By Cauchy's theorem, if lambda is within GAMMA, the value F(lambda) can be expressed by 1 F(z) F(lambda) = -------- INTEGRAL ------------ dz (2 pi i) GAMMA (z - lambda) In particular, let lambda be any of the zeta_k. Then, summing on k, (n-1) (n-1) 1 F(z) SIGMA F(zeta_k) = SIGMA ---------- INTEGRAL ------------ dz k=0 k=0 (k 2 pi i) GAMMA (z - zeta_k) 1 (n-1) 1 = -------- INTEGRAL F(z) SIGMA ------------ dz (2 pi i) GAMMA k=0 (z - zeta_k) 1 = -------- INTEGRAL F(z) (d/dz)[log P_n(z)] dz (2 pi i) GAMMA If P_n(z) = H_n(z), so H_n(zeta_k) = 0, then (n-1) n H_(n-1)(z) SIGMA F(zeta_k) = ------ INTEGRAL F(z) ---------- dz k=0 (pi i) H_n(z)
Email me, Bill Hammel at