Asymptotic Behavior of z->x
and z->y Rotation Matrices
This appendix derives the asymptotic form of the rotation matrices
used in [Section XIV] to define rotated position operators, and contains
the proof details of theorem 14.5.
FCCR Table of Contents
For the rotation of the z-axis into the x-axis,
D^(j)(0, - pi /2, 0)_ab =
2^(-j) SIGMA_k (-1)^k/k! c(j, a, b; k)
and for the rotation of the z-axis into the y-axis,
D^(j)( pi /2, - pi /2, 0)_ab =
exp(+ia pi/2) exp(-ib pi) 2^(-j) SIGMA_k (-1)^k/k! c(j, a, b; k)
where
sqrt[(j+b)! (j-b)! (j+a)! (j-a)!]
c(j, a, b; k) := ---------------------------------
(j+b-k)! (j-a-k)! (k+a-b)!
The number of terms in the summation, as a function of j, a, b:
for a = j, hence also for b = j that there is only one term;
generally, the number of terms in the sum is equal to
1 + Min{ j(+|-)a, j(+|-)b }
E.g., [Messiah 1965] v. II p. 1073.
We want the asymptotic form of these matrix elements for very large j,
and moderate a and b. First address the behavior of the coefficient
c(j, a, b; k). This can be rewritten as,
(j-b)! (j+a)! 1
[ B(j+b k)k! B(j-a k)k! ---------------- ]^(1/2) --------
(j+b-k)! j-a-k)! (k+a-b)!
Using Stirling's approximation for large A,
A! -> sqrt(2 pi A) A^A e^(-A)
the binomial coefficient is approximated by
B(A B) -> A^B/B!
so
B(j+b k)k! -> (j+b)^k
B(j-a k)k! -> (j-a)^k
and
(j-b)! (j+b-k)^k
-------- -> e^(-2b) -----------------
(j+b-k)! (j-b)^b (j+b-k)^b
(j+a)! (j-a-k)^k
-------- -> e^(+2a) -----------------------
(j-a-k)! (j+a)^(-a) (j-a-k)^(-a)
then c(j, a, b; k) is approximated by,
e^(a-b) (j+b)^k (j-a)^k (j+a)^a
-------- [ ----------------------- (j+b-k)^(k-b) (j-a-k)^(k+a) ]^(1/2)
(k+a-b)! (j-b)^b
Considering that j is very much larger than a and b, approximate
c(j, a, b; k) further by,
e^(a-b)
-------- [ j^(2k+a-b) (j+b-k)^(k-b) (j-a-k)^(k+a) ]^(1/2
(k+a-b)!
On the same basis
(j+b-k)^(k-b) (j-a-k)^(k+a) -> (j-k)^(2k+a-b)
So
e^(a-b)
c(j, a, b; k) -> --------- [ j^(2k+a-b) (j-k)^(2k+a-b) ]^(1/2)
(k+a-b)!
e^(a-b)
-> -------- j^(2k+a-b) [ (1 - k/j)^(2k+a-b) ]^(1/2)
(k+a-b)!
e^(a-b)
-> -------- j^(2k+a-b)
(k+a-b)!
Then the rotation matrix taking the z axis to the x axis has the
asymptotic elements,
D^(j)(0, - pi /2, 0)_ab ->
2^(-j) SIGMA_k (-1)^k/k! e^(a-b) j^(2k+a-b)/(k+a-b)!
The m-th Bessel function of integral order is defined by the series,
infinity (-1)^k
J_m(z) := 2^(-m) z^m SIGMA --------- (z/2)^(2k)
k=0 k! (k+m)!
where
J_(-m)(z) = (-1)^m J_(+m)(z)
E.g. [Bronshtein 1985], p. 410
Taking the summation for D^(j)(0, - pi /2, 0)_ab over an infinite range
of positive integral k, gives the asymptotic approximation
D^(j)(0, - pi /2, 0)_ab -> e^(a-b) 2^(-j) J_(a-b)(2j)
Since j = 0, 1/2, 1, 3/2, ..., 2j is integral, and for 2j odd or even,
the quantity (a-b) is integral, so the approximation is always in terms
of Bessel functions of integral order. Furthermore, we are approximating
for large values of the argument of the Bessel function, for which the
the Bessel function is asymptotically approximated by
[Bronshtein 1985], p. 413
J_m(z) -> (2/[ pi z])^(1/2) cos(z - pi m/2 - pi /4)
Finally the asymptotic approximations are:
D^(j)(0, - pi /2, 0)_ab ->
( pi j)^(-1/2) 2^(-j) e^(a-b) cos( 2j - pi (a-b)/2 - pi /4 )
and
D^(j)( pi /2, - pi /2, 0)_ab ->
i^a (-1)^b ( pi j)^(-1/2) 2^(-j) e^(a-b) cos( 2j - pi (a-b)/2 - pi /4 )
QED
Go to Table of Contents
Go to Physics Pages
Go to Home Page
Email me, Bill Hammel at
bhammel@graham.main.nc.us
READ WARNING BEFORE SENDING E-MAIL
The URL for this document is:
http://graham.main.nc.us/~bhammel/FCCR/apdxH.html
Created: August 1997
Last Updated: May 28, 2000
Last Updated: July 21, 2002